
Clustering Software Engineering
Research with Text Embeddings

Turner Burchard
Computer Science Department

Montana State University
Bozeman, Montana

turnerburchard@gmail.com

Abstract—Most modern research fields now contain thousands
of papers, often written on a diverse set of topics. These papers
tend to be disorganized and spread across numerous journals
and conferences, making them difficult to explore for researchers
and professionals. To address this, we employ text embedding
and clustering techniques to systematically organize software
engineering literature into semantically coherent categories. By
applying a streamlined dimensionality reduction step and evalu-
ating multiple clustering algorithms, we found that K-means and
Gaussian Mixture Models consistently outperformed alternatives.
These methods produced well-separated, meaningful clusters,
offering a data-driven framework for rapidly gaining insights
into the evolving state of software engineering research.

Index Terms—software engineering, text embedding, dimen-
sion reduction, clustering algorithms, research categorization,
unsupervised learning, empirical analysis

I. INTRODUCTION

The rapid expansion of research across modern fields has
led to a proliferation of academic papers, often numbering
in the thousands within a single domain. This explosion of
information presents a significant challenge: researchers and
professionals alike struggle to navigate the breadth of knowl-
edge effectively. The problem is particularly acute in software
engineering, where research spans a wide array of topics and
is often scattered across diverse journals and conferences. The
lack of organization hinders the accessibility and utility of
these works, particularly for professionals seeking actionable
insights.

To address this challenge, it is essential to develop system-
atic methods for reviewing and categorizing research. Recent
advances in text embedding techniques offer a promising
solution. By encoding textual information into numerical
representations, text embeddings enable the application of
machine learning methods, such as clustering, to group related
works based on their content. These tools have reached a
level of maturity that makes them suitable for application to
complex, real-world datasets.

In this paper, we leverage text embeddings and clustering al-
gorithms to classify software engineering research into distinct
categories. The resulting categorization facilitates the explo-
ration of the field and supports targeted inquiries into specific
areas of interest. Furthermore, we introduce a basic tool
that could provide rapid summarizations of research topics,
offering a practical solution for researchers and professionals

to understand the state of the field. This approach not only
aids in organizing the existing literature, but also lays the
groundwork for more structured and accessible research.

A. Background

Vector embeddings, also referred to as word embeddings
in the context of natural language processing, are numerical
representations of textual data designed to capture semantic
meaning in a continuous vector space [1]. These represen-
tations address the limitations of earlier techniques, such as
the bag-of-words model, which failed to account for semantic
relationships between terms [2]. Embeddings encode words
or documents as dense vectors in a high-dimensional space,
where semantically similar entities are positioned closer to-
gether. This is achieved by training models on large corpora
of text, leveraging co-occurrence statistics and contextual
information [3].

Early methods such as Word2Vec, introduced by Mikolov
et al., used shallow neural networks to predict context given
a word (skip-gram) or a word given its context (CBOW)
[4]. GloVe (Global Vectors for Word Representation) fur-
ther advanced the field by combining global co-occurrence
statistics with a local context window to produce embeddings
that balance efficiency and accuracy [5]. These approaches
demonstrated the power of embeddings in capturing complex
linguistic structures, such as analogical reasoning (e.g., ”king
- man + woman = queen”) [6].

Recent advancements, such as BERT (Bidirectional Encoder
Representations from Transformers) and GPT (Generative Pre-
trained Transformer), have introduced contextual embeddings
that dynamically adjust based on surrounding words, improv-
ing understanding of polysemous terms [7]. These methods
have broadened the applicability of embeddings to domains
beyond text, such as image analysis and recommendation
systems [8].

In this work, text embeddings are utilized to encode the
abstracts and titles of research papers, providing the founda-
tion for clustering algorithms to group similar works. This
approach preserves semantic information and enables the
discovery of meaningful relationships between research topics,
making embeddings an effective tool for organizing large,
unstructured datasets like software engineering research.



Clustering methods, as unsupervised machine learning tech-
niques, identify natural groupings within data by optimizing
specific criteria, such as minimizing intra-cluster variance
while maximizing inter-cluster separation [?]. These methods
are widely used in applications such as biology, marketing,
and text analysis, where they reveal hidden structures within
datasets [9]. Common clustering methods include K-means,
DBSCAN, and hierarchical clustering, each with unique
strengths and limitations based on the dataset’s characteristics.

B. Motivation

Despite the advancements in text embedding and clustering
techniques, their combined application to research categoriza-
tion remains underexplored, possibly due to the complexity of
interpreting high-dimensional embeddings. However, research
has shown that embeddings capture meaningful semantic
relationships [10], and clustering methods have successfully
applied these properties in diverse areas such as social media
analysis [11], categorization of large language model re-
sponses [12], and classification of software applications based
on textual descriptions [13]. This study aims to bridge this
gap by applying these techniques to the organization and
analysis of Software Engineering research papers, leveraging
the strengths of both embeddings and clustering to uncover
meaningful patterns in the literature.

C. Research Hypotheses

Hypothesis: Clustering algorithms applied to embedded
text representations of Software Engineering research papers
will produce distinct and meaningful clusters, and at least
one clustering algorithm will perform significantly better than
the others in terms of producing well-separated clusters as
measured by clustering validity metrics.

Exploratory Goal: The clusters produced by the algorithms
are expected to align with meaningful semantic categories
in the domain of Software Engineering research. While not
directly testable, this alignment will be qualitatively assessed
to provide insights into the practical utility of the clustering
approach.

II. APPROACH

Our overall goal for this experiment requires several steps of
collection, processing, and analysis. Specifically, we began by
collecting a large sample of relevant research papers program-
matically. This data was then embedded with a small vector
embedding tool, in order to have numerical representations of
the data. This data was then reduced in dimension for simpler
and more effective clustering. Several clustering techniques
were then applied to the data, along with the required hyper-
parameter tuning. Finally, we took several steps of analysis to
understand which of the clustering techniques was best, and
whether the process as a whole was effective.

A. Data Collection

To facilitate the clustering of software engineering research
papers, the first step involved collecting a suitable dataset.

Given the scale of the study, manual acquisition of research
papers was impractical. Instead, automated APIs were em-
ployed to efficiently gather a large number of research papers
along with their metadata. Crossref was identified as an ideal
source due to its extensive database, comprising over 100
million records, including several million in computer science.
From this dataset, we targeted papers relevant to software
engineering.

The Crossref API enabled programmatic retrieval of meta-
data for relevant papers, streamlining the data collection pro-
cess. To address computational constraints, a random sample
of 500 papers per test was selected, with 10 tests conducted
for each clustering method, resulting in a dataset of 5000
paper samples. However, as sampling was performed with
replacement, the total unique number of papers analyzed is
likely less than 5000.

To ensure relevance, the search was restricted to papers pub-
lished within the last five years. The search criteria included
”Software Engineering” with manual filtering and adjustments
to exclude unrelated papers wherever possible.

B. Vector Embedding

To embed the textual data, we selected a single, efficient
embedding model. This choice was guided by the computa-
tional constraints of the dataset and the high cost of using
large embedding algorithms. A model with fewer dimensions
was preferred to simplify clustering, as it is computationally
more efficient to use low-dimensional embeddings directly
rather than reducing high-dimensional embeddings post hoc.
Additionally, the ability to run the embedding model locally
was crucial to minimize costs, reduce network latency, and
improve overall efficiency.

We opted to use FastEmbed, a 384-dimensional embedding
model that is both fast and has been shown to be more accurate
than certain larger, more complex models [14]. Its lower
dimensionality not only enhances computational efficiency
but also makes it particularly well-suited for clustering tasks,
where simplicity and interpretability are critical. Additionally,
its native Python library provides straightforward implementa-
tion, making it a practical and effective choice for this study.

C. Dimension Reduction

Principal Component Analysis (PCA) is a standard tech-
nique for unsupervised dimensionality reduction that identi-
fies directions of maximal variance in high-dimensional data.
Applying PCA to our 384-dimensional embeddings allowed
us to emphasize the most informative components and discard
redundancy. Although embeddings often contain valuable in-
formation across all dimensions, prior work [15] demonstrates
that PCA can balance dimension reduction and clustering
quality. Guided by these findings, we tested various target
dimensionalities and variance thresholds before settling on a
configuration that retained approximately 70% of the variance.
This choice was determined to be an effective balance between
complexity and the quality of downstream clustering. Figure 1



Fig. 1. Explained variance by the number of PCA components.

illustrates the cumulative variance explained by increasing the
number of principal components.

D. Clustering

After embedding the textual data and reducing its dimen-
sionality, clustering is performed to analyze the structure of the
data. Various modern clustering algorithms were evaluated to
identify the one that optimally separates clusters. The methods
considered include K-means, MiniBatch K-means, DBSCAN,
Agglomerative Hierarchical Clustering, Self-Organizing Maps
(SOM), Birch, and Gaussian Mixture Models.

Each algorithm requires tuning specific hyperparameters,
with the number of clusters being a common parameter across
many methods. A grid search approach was employed for
hyperparameter tuning, initially using a broad range of values
and refining these based on observed results. To validate
the clustering performance, results were projected into two-
dimensional space and visualized as scatter plots with distinct
colors for each cluster. These visualizations helped assess the
separability of clusters and guided adjustments, particularly to
the number of clusters.

Despite efforts to fine-tune hyperparameters, achieving per-
fect optimization was challenging due to the unsupervised
nature of the problem, the variety of algorithms, and the
dataset’s size. However, the tuning process followed practices
commonly observed in the literature and produced results
significantly better than random parameter selection.

Figure 2 illustrates the relationship between the number of
clusters and silhouette scores for K-means clustering, high-
lighting the impact of cluster selection on performance.

E. Analytical Methods

Analyzing the clustered data requires a careful approach
due to the unsupervised nature of the problem, which in-
hibits direct evaluation of clustering accuracy. To address
this, silhouette scores are employed as a primary metric to
assess cluster compactness and separation. This provides an
objective basis for comparing the performance of different

Fig. 2. Silhouette scores as a function of the number of clusters for K-means
clustering.

clustering techniques and identifying those that produce the
most cohesive and well-separated groupings.

Beyond these metrics, statistical methods are utilized to
compare the robustness of clustering results across techniques.
One-way ANOVA and post hoc analyses are conducted to
identify significant differences in performance metrics. Sta-
tistical significance testing ensures that observed differences
are not attributable to random variation, thereby enhancing
the reliability of the results.

To evaluate the practical utility of the clusters, interpretabil-
ity and alignment with known structures in the software
engineering domain are assessed. This includes a qualitative
analysis of the clusters, examining whether they correspond to
meaningful subfields, themes, or topics within the literature.
Domain-specific validation further grounds the findings, ensur-
ing that the identified clusters have relevance and coherence
within the field.

III. RESULTS

A. Clustering Performance

Table I summarizes the silhouette scores for the seven
clustering algorithms tested at 50 dimensions across 10 trials.
K-means and Gaussian Mixture models demonstrated the
highest average silhouette scores, suggesting superior cluster
separability. In contrast, Birch consistently showed the lowest
scores, indicating weaker clustering performance.

B. Cluster Visualization

Figure 3 depicts an example of K-means clustering results
projected into two dimensions using principal component
analysis. Clusters were manually labeled to illustrate semantic
separation. Visual inspection supports the numerical findings,
confirming well-separated clusters for K-means.

C. Statistical Analysis

All clustering algorithms were evaluated across multiple
trials using quantitative metrics. To assess whether the choice
of clustering algorithm influenced silhouette scores, we first



TABLE I
CLUSTERING ALGORITHM SILHOUETTE SCORES

Algorithm Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

K-means 0.0731 0.0749 0.0775 0.0790 0.0776 0.0772 0.0761 0.0768 0.0748 0.0748 0.0762
Minibatch K-means 0.0555 0.0594 0.0600 0.0621 0.0606 0.0624 0.0640 0.0633 0.0641 0.0664 0.0618
DBSCAN 0.0501 0.0507 0.0544 0.0532 0.0547 0.0557 0.0529 0.0518 0.0561 0.0583 0.0538
Agglomerative Hierarchical 0.0535 0.0546 0.0543 0.0526 0.0543 0.0533 0.0501 0.0507 0.0525 0.0527 0.0529
SOM 0.0554 0.0563 0.0547 0.0537 0.0538 0.0545 0.0562 0.0560 0.0559 0.0548 0.0551
Birch 0.0384 0.0355 0.0351 0.0325 0.0330 0.0318 0.0322 0.0325 0.0333 0.0362 0.0340
Gaussian Mixture 0.0722 0.0741 0.0762 0.0752 0.0763 0.0767 0.0745 0.0739 0.0720 0.0736 0.0745

Fig. 3. Example of K-means clustering results projected to 2 dimensions with
manual semantic labeling.

verified the normality of residuals via the Shapiro-Wilk test
(p ¿ 0.05) and confirmed homogeneity of variance through
Levene’s test. We then conducted a one-way repeated mea-
sures Analysis of Variance (ANOVA), treating the algorithm
as a within-subject factor and silhouette scores as repeated
measurements. The ANOVA showed a significant main effect
of algorithm on clustering performance (F(6, 54) = 479.30, p
¡ 0.0001).

To determine which algorithms differed significantly, we
employed Tukey’s Honestly Significant Difference (HSD) post
hoc test. Results revealed that K-means and Gaussian Mixture
Models both produced significantly higher silhouette scores
than the other methods (p ¡ 0.05), with no significant difference
between these two top performers.

IV. DISCUSSION

This study aimed to assess the performance of various
clustering algorithms in identifying meaningful groups within
a corpus of Software Engineering research papers. The results
of the statistical analysis, including the ANOVA and post hoc
tests, provide significant insights into algorithm performance
and the structure of the data.

The repeated measures ANOVA revealed significant
differences between clustering algorithms (F (6, 54) =
479.3016, p < 0.0001). Post hoc Tukey HSD analysis con-
firmed that K-means and Gaussian Mixture algorithms per-

formed significantly better than other methods with 95%
confidence. This result supports our hypothesis that certain
algorithms are better suited for identifying separable clusters
in high-dimensional textual data.

Despite their relatively low silhouette scores due to the curse
of dimensionality, K-means and Gaussian Mixture excelled
in discovering clusters with clear semantic meanings. These
algorithms’ superior performance is likely because they as-
sume spherical clusters, which aligns with the structure of the
research data. DBSCAN, by contrast, is designed for arbitrarily
shaped clusters, such as rings or elongated structures, which
are less likely to represent the topics in Software Engineering
research. Gaussian Mixture’s use of soft clustering likely
enhances its ability to handle overlapping clusters, explaining
its strong performance.

Manual inspection of the clusters revealed consistent topics
present in the clusters. This inspection was done by manually
checking the points within a cluster, and verifying whether the
clusters were semantically coherent. We identified stable topic
clusters such as case studies, heuristic methods, frameworks,
systematic literature reviews, and novel tools. These results
suggest that the vector space effectively encodes meaningful
information, though some noise was present, with papers that
span multiple topics (e.g., an SLR on case studies) occupying
intermediate positions in the space. This overlap indicates
that the high-dimensional vector space preserves nuanced re-
lationships that could be further exploited with more advanced
techniques.

While K-means and Gaussian Mixture demonstrated strong
performance, the utility of other methods should not be over-
looked. Agglomerative Hierarchical Clustering, while under-
performing numerically, offers significant interpretive advan-
tages due to its hierarchical structure. This technique enables
the discovery of nested clusters, such as ”Computer Science”
containing ”Software Engineering,” and further sub-clusters
like those identified here. This hierarchical representation
provides a broader context for understanding the relationships
among topics and is particularly useful when analyzing larger
datasets.

Looking ahead, custom-built clustering methods designed
for high-dimensional, noisy, and overlapping spheroids may
improve performance further. Such methods could leverage
domain-specific insights and advanced statistical techniques
to enhance cluster separation and interpretability.



In summary, K-means and Gaussian Mixture algorithms
successfully identified meaningful clusters, but further refine-
ment of clustering approaches may be necessary to fully
exploit the latent structure of the data and address its inherent
noise and overlap.

V. CONCLUSION

The results of our repeated measures ANOVA and post
hoc analysis provide support for our hypothesis. Clustering
algorithms such as K-means and Gaussian Mixture signifi-
cantly outperformed others, demonstrating their effectiveness
in producing distinct and meaningful clusters aligned with the
semantic content of research papers. However, the variability
in performance across algorithms indicates that no single
method fully captures the complex semantic structure inherent
in Software Engineering research papers. Future exploration,
such as parameter tuning or hybrid approaches that combine
multiple clustering techniques, may improve clustering quality
and consistently uncover meaningful patterns.

These findings highlight the importance of selecting the
appropriate clustering algorithm for specific research contexts.
K-means performed well due to its assumption of spherical
clusters, which aligns with the nature of this dataset. Similarly,
Gaussian Mixture excelled due to its use of soft clustering,
which enhanced its ability to handle overlapping clusters. On
the other hand, Agglomerative Hierarchical Clustering, while
numerically underperforming, offers unique advantages in its
ability to represent nested relationships, providing additional
insights in larger-scale datasets.

A. Threats to Validity

Although the study was carefully designed, several potential
threats to validity should be considered:

1) Testing Validity: Errors in data processing, automation,
or sampling could impact the accuracy of the results. For
instance, automating the extraction of textual data may lead
to the over- or underrepresentation of certain information.

2) Internal Validity: Bias in Data Collection: The Crossref
API, while extensive, is not comprehensive. Research that
is not uploaded to Crossref is excluded, potentially omitting
entire fields, journals, or conferences. Data Representation:
Abstracts and titles often fail to fully represent the content of
research papers, introducing uncertainty into the embeddings
and potentially affecting cluster quality. Cluster Verification:
While manual inspection suggested that clusters were seman-
tically meaningful, the lack of rigorous empirical confirma-
tion limits confidence in their meaningfulness. Model Bias:
Clustering algorithms inherently introduce bias, and no single
model is perfectly suited for every dataset.

3) External Validity: Temporal Bias: Sampling papers
within specific timeframes risks introducing recency bias or
excluding recent publications. Replicability: While the study
demonstrated high replicability, applying these methods to
larger or more diverse datasets may yield varying results
depending on dataset composition.

B. Summary

This paper demonstrates that meta-research analysis can be
effectively conducted by embedding research abstracts into a
vector space and clustering the resulting embeddings. This
methodology enabled the identification of distinct clusters, val-
idated through silhouette scores, which showed that K-means
and Gaussian Mixture algorithms significantly outperformed
other methods in producing well-separated clusters.

Although the focus of this study was limited to Software
Engineering research—a relatively small subfield of Computer
Science—the proposed techniques are scalable and adaptable
to larger datasets across diverse disciplines. These tools have
practical applications for researchers, students, and profession-
als seeking to explore the research landscape within specific
domains. The approach offers a data-driven way to identify
key areas, subfields, and trends in the literature.

Despite its contributions, the study also revealed areas
for future improvement. Custom clustering methods tailored
to high-dimensional, noisy, and overlapping clusters could
enhance results. Additionally, integrating advanced semantic
analysis could empirically validate the semantic coherence of
clusters. Expanding this work to broader datasets or larger
fields may further generalize the proposed techniques.

In conclusion, this study provides a foundation for improv-
ing clustering performance in meta-research and extracting
meaningful patterns from large-scale textual datasets. These
findings open new opportunities for advancing the under-
standing of research landscapes and enhancing data-driven
exploration in scientific fields.

REFERENCES

[1] F. Almeida and G. Xexéo, “Word embeddings: A survey,” 2023.
[2] E. Rudkowsky, M. Haselmayer, M. Wastian, M. Jenny, Š. Emrich, and

M. Sedlmair, “More than bags of words: Sentiment analysis with word
embeddings,” Communication Methods and Measures, vol. 12, no. 2-3,
pp. 140–157, 2018.

[3] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model:
a statistical framework,” International journal of machine learning and
cybernetics, vol. 1, pp. 43–52, 2010.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[5] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” vol. 14, pp. 1532–1543, 01 2014.

[6] H. Liu, Y. Wu, and Y. Yang, “Analogical inference for multi-
relational embeddings,” in International conference on machine learn-
ing, pp. 2168–2178, PMLR, 2017.

[7] B. Ghojogh and A. Ghodsi, “Attention mechanism, transformers, bert,
and gpt: tutorial and survey,” 2020.

[8] F. Incitti, F. Urli, and L. Snidaro, “Beyond word embeddings: A survey,”
Information Fusion, vol. 89, pp. 418–436, 2023.

[9] A. Ghosal, A. Nandy, A. K. Das, S. Goswami, and M. Panday, “A
short review on different clustering techniques and their applications,”
Emerging Technology in Modelling and Graphics: Proceedings of IEM
Graph 2018, pp. 69–83, 2020.

[10] J. Camacho-Collados and M. T. Pilehvar, “From word to sense em-
beddings: A survey on vector representations of meaning,” Journal of
Artificial Intelligence Research, vol. 63, pp. 743–788, 2018.

[11] J. Ravi and S. Kulkarni, “Text embedding techniques for efficient
clustering of twitter data,” Evolutionary Intelligence, vol. 16, no. 5,
pp. 1667–1677, 2023.

[12] A. Petukhova, J. P. Matos-Carvalho, and N. Fachada, “Text clustering
with llm embeddings,” arXiv preprint arXiv:2403.15112, 2024.



[13] F. Ebrahimi, M. Tushev, and A. Mahmoud, “Classifying mobile ap-
plications using word embeddings,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 31, no. 2, pp. 1–30, 2021.

[14] Qdrant, “Fastembed: Fast, accurate, lightweight python
library for embedding generation.” GitHub. Available:
https://github.com/qdrant/fastembed. Accessed: Dec. 5, 2024.

[15] V. Raunak, V. Gupta, and F. Metze, “Effective dimensionality reduction
for word embeddings,” in Proceedings of the 4th Workshop on Repre-
sentation Learning for NLP (RepL4NLP-2019) (I. Augenstein, S. Gella,
S. Ruder, K. Kann, B. Can, J. Welbl, A. Conneau, X. Ren, and M. Rei,
eds.), (Florence, Italy), pp. 235–243, Association for Computational
Linguistics, Aug. 2019.


