
Gated NEAT Ensembles

Enhancing the Capabilities of Neuroevolution Ensembles via
Gating Networks

Turner Burchard turnerburchard@gmail.com

Department of Computer Science

Montana State University

Bozeman, MT

Abstract

We propose a technique for combining NeuroEvolution of Augmenting Topologies (NEAT)
networks into an ensemble through the use of a gating network. Using this model, a gating
NEAT network can decide which network’s output to use from the ensemble, based on
a problem’s inputs. By applying this method to various problems, improvements in pre-
diction power can be clearly observed, particularly in difficult reinforcement learning. We
confirm the technique’s validity on the XOR problem, apply it to a modified pole balancing
task, and finally display its learning power by training to play the game of Go. Though
performance gains were not extreme in comparison to a single NEAT network, the ensemble
method has clear potential for solving difficult learning problems when applied carefully.

Keywords: NEAT, Neural Networks, Gating Networks, Reinforcement Learning

1. Introduction

NEAT (Neuroevolution of Augmented Topologies) is a modern technique which has recently
gained popularity for developing efficient neural networks. Unlike more traditional meth-
ods for neural network evolution, such as gradient descent or evolutionary algorithms, it
functions by starting with a minimal network, consisting only of an input layer directly con-
nected to an output layer. As the evolution process continues, mutation and recombination
work to slowly build up a network, ostensibly consisting only of the necessary connections
and optimal weights. NEAT additionally employs a unique form of evolution, with spe-
cially designed operators to ensure the diversity of the population, while still allowing for
productive recombination and mutation. This technique has been successfully applied to a
wide variety of problems, especially in the field of reinforcement learning, but it still has
its downsides. Since NEAT begins with an essentially empty network, different individuals
in a population can grow to have wholly differing topologies, and each learner may only be
optimal for a subset of the data. This creates several issues. Namely, there tends to be high
variation in NEAT solutions from one run to another, thanks to highly diverse populations.
Secondly, a population may have high overall fitness, but the individual with the highest
fitness may be consistently unsuccessful at classifying a subset of the data.

Ensemble methods have been used extensively in the machine learning community to
mitigate these issues. By combining the predictions of multiple individuals, ensembles can
improve overall accuracy and reduce the variance in solutions. In the context of NEAT,
ensembles offer a promising solution to address the challenges of high variation and sub-
optimal performance. However, ensembles can be problematic, as it is difficult to combine

1



Burchard

their predictions in a way which takes all outputs into account without losing the ability to
accurately classify in a variable environment.

In an attempt to solve these issues, we propose a form of NEAT ensemble which takes
into account the predictions of all individuals, specifically through the use of a gating net-
work. This approach allows us to create a population of specialists which can each accurately
predict a specific range of problems, with a managing network to decide which specialist
to ask. Our work contributes to the growing body of research on NEAT and highlights the
potential of ensemble methods for improving the performance of neural network optimiza-
tion techniques. By combining the strengths of NEAT and ensemble methods, we are able
to create a powerful approach that can address the limitations of traditional NEAT and
achieve state-of-the-art performance on benchmarks. We expect to find that the ensemble
will have significantly increased computational complexities, but that its downsides will be
outweighed by the heightened ability to find accurate predictions in a variety of scenarios.

2. Background

2.1 NEAT

x1

x2

x3

h1 y

x1

x2

x3

h1

h2

y

Figure 1: Example of a NEAT network structural mutation by adding a new node within
an existing connection between input node x3 and output node y.

Since the concept of perceptrons was first created, deciding on the topology of a network
of neurons has been one of the hardest problems to solve (Rosenblatt, 1958) The best way
to decide on specific details, such as the number of layers and nodes in each layer, has
generally been tuning through trial-and-error. Since the 1990s, many have solved this issue
with Topology and Weight Evolving Artificial Neural Networks (TWEANNs), which are
designed to evolve both the weights of a network, and its topology simultaneously. Even
basic NeuroEvolution (NE) strategies have been shown to be faster and more efficient than
other solutions at solving continuous and high dimensional problems. They also excel in
non-Markovian spaces, thanks to their ability to form basic representations of memory in
recurrent connections (Gomez and Miikkulainen, 1999).

One of the most modern versions of this method is known as NeuroEvolution of Aug-
menting Topologies (NEAT) (Stanley and Miikkulainen, 2002), which presents novel solu-
tions to a number of the constantly prevalent issues with most TWEANNs. NEAT uses
mutation to alter both weights and structure, with new connections being assigned ran-
dom weights, and new nodes using an input weight of one to reduce impact to the network.

2



Gated NEAT Ensembles

Weights are mutated in the same way that other NE systems use, randomly choosing connec-
tions. Structural mutation occurs by either adding a new connection between two previously
unconnected nodes (Figure 2.1), or by taking an existing connection and adding a new node
within it. As a result of this, the genomes gradually grow larger.

The network is represented as a list of connections, which refer to two connected nodes,
an in-node and an out-node, as well as the weight, whether it is activated, and the histor-
ical marker. Crossover is often an issue between networks with competing structures, so
NEAT uses historical markers to help align structures during crossover, hugely increasing
the algorithm’s ability to maintain genetic information without complex calculations. This
works by incrementing a global innovation number which is assigned to new genes, which is
inherited throughout evolution. This allows the algorithm to know which genes match up
with which, so in crossover innovation numbers are lined up. Genes that do not match are
always included from the more fit parent. Its population is separated through speciation to
protect innovation, which calculates genetic distance between individuals, and groups them
into species with similar genetic material. This speciation distance δ is calculated using
fitness sharing, as a linear combination of the number of excess E and disjoint D genes, as
well as the average weight differences of matching genes W , including disabled genes:

δ =
c1E

N
+

c2D

N
+ c3 ·W. (1)

In each generation, the population is separated into non-overlapping species, based on a
compatibility threshold δt. To ensure no one species takes over the population, the fitness
f ′
i for each individual i is calculated based on its distance δ from each other individual j in
the population:

f ′
i =

fi∑n
j=1 sh(δ(i, j))

(2)

with sh set to 0 when δ(i, j) is above the threshold δt, else 1. Thus, species are clustered
according to compatibility, eliminating their lowest performing members in each generation,
then replaced by their offspring in the following generation.

NEAT is generally considered to be one of the most important innovations in evolution-
ary neural networks, and has been extended and modified in hundreds of ways (Papavasileiou
et al., 2021). It has been shown to be adept at solving almost any type of learning problem,
and is currently considered to be the most optimal solution for several difficult problems.
In particular, NEAT algorithms have some of the best combined efficiency and performance
on continuous-space problems, such as the pole-balancing problem, or regression data with
difficult-to-determine non-linear solutions.

2.2 Ensemble Predictions

Using a consensus of predictors rather than a single one has long been a tactic of improving
the accuracy and variance of predictions. This can mitigate the biases or limitations present
in individuals, and as such has seen use with many applications and predictors (Mohammed
and Kora, 2023). Random forests and other similar ensemble methods are known to be
some of the best models in terms of efficiency and performance across many types of data
(Breiman, 2002).

3



Burchard

However, across ensemble learning, NE is rarely studied. There are some notable ex-
ceptions, however, such as Faber et al. (2021). In this paper, the authors use an ensemble
of NE learners to detect multivariate time series anomalies. It is noted that the NE en-
semble approach did work well, but would take significantly more fine-tuning to see desired
performance on the dataset. For this reason, we plan to utilize more standard performance
metrics in hopes of displaying the base performance of an ensemble on a more general scale,
while also displaying its applications on a more intractable problem.

There are several possibilities for training a group of networks as an ensemble rather
than individuals. The first is by a simple voting procedure, either weighted or unweighted.
Simple voting has been shown to work best in situations with a small number of discrete
outputs, such as classification. However, as this experiment will not focus on these problems,
this can be safely ignored. Applying weights to the vote allows for voting in continuous
spaces. This can be problematic, though. In the case that half the population wants to take
one action, and the other half wants to take another, the result is an action which none of
the voters want. Or in the case of extreme outliers, one vote can hold far greater importance
than the rest. Another option is to include confidence and pick the voter with the greatest
confidence. This can be suitable in certain cases, but is unlikely to work well in continuous
spaces. Bagging, or Bootstrap Aggregating, is another popular ensemble technique that
involves training multiple models on different subsets of the training data. These models
are combined using a voting or averaging mechanism to make a prediction (Breiman, 1996).
Stacking, also known as stacked generalization, is a meta-ensemble technique that involves
training multiple base models and then combining them using a higher-level model. The
higher-level model learns to combine the predictions of the base models to make a final
prediction (Wolpert, 1992).

The last option which is commonly used in the literature is a gating network, which trains
a separate network to learn which learners to use based on the input. Gating networks have
been employed in the literature in a variety of different ways, with no real consensus on
methodology. Some papers have shown significant improvements by adding a gating network
to other approaches (Ebrahimpour et al., 2013), and substantial research has been done to
make it work efficiently with neural networks (Brown, 2004). Despite this, the concept of
gating networks in conjunction with NEAT has not been studied extensively.

3. Experimental Design and Results

In this paper, we propose using a gating network to program an ensemble of NEAT learners.
The ensemble consists of multiple NEAT learners that are trained on the same problem, but
with different random start seeds. The gating network is another NEAT network, trained
as a population. By feeding the inputs to the gating network, the output of the gating units
can be used to select which NEAT learner to use for a specific problem.

Formally, let fi be the i-th NEAT learner in the ensemble, and g be the gating unit.
Given an input x, the output of the gating unit g(x) is a scalar value in the range [0,1] that
represents the probability that fi should be used to generate the output. The probability
that fi is selected is given by the softmax function:

P (fi|x) =
eg(x)∑N
j=1 e

g(x)

4



Gated NEAT Ensembles

The result of this process when repeated for each fi is a vector of probabilities p =
[p1, p2, ..., pn]

T , where p ∈ [0, 1] and
∑n

i=1 pi = 1. Then, a random selection is made based
on these probabilities, similar to the process in fitness proportionate selection.

We use cooperative coevolution to train the ensemble of NEAT learners with the gating
network, to maximize the overall performance by evolving both simultaneously. During the
cooperative coevolution process, the gating units and individual NEAT learners are evolved
together to maximize the overall performance of the ensemble. The gating units evolve to
select the most appropriate individual NEAT learner for each problem, while the individual
NEAT learners evolve to improve their individual performance. This approach allows the
ensemble to take advantage of the strengths of each individual NEAT learner while avoiding
the potential weaknesses that come with relying on a single learner.

During the training process, we jointly optimize the weights and biases of the gating
network and the individual NEAT learners to maximize the overall performance of the
ensemble. Specifically, we use a fitness function that evaluates the performance of the
entire ensemble on a set of training examples. The fitness function is given by:

fitness =
∑
x∈D

N∑
i=1

pi(x) · fi(x),

where D is the set of training examples, N is the number of individual NEAT learners, pi(x)
is the probability produced by the gating network for input vector x and individual NEAT
learner i, and fi(x) is the fitness of individual NEAT learner i on input vector x. The fitness
of each learner is defined by the specific problem to which the method is applied.

Four problems were chosen for testing: XOR, regression, double pole balancing, and
Go. XOR is used first, as a confirmation that the approach works and reliably outputs
results. Regression then allows for detailed analysis of the system, especially displaying its
capabilities in choosing an expert for a specific problem. Double pole balancing is a slightly
more complex version of the very common pole balancing problem, which allows for general
comparison against other techniques. Finally, the classic game of Go is used to display the
capabilities on a more difficult problem.

For comparison, two models were used in each experiment: a single NEAT network
and the proposed NEAT ensemble. NEAT was implemented using the neat-python pack-
age, which uses the parameters and implementation details from Stanley and Miikkulainen
(2002). In testing, the default parameters were able to accurately replicate the original
NEAT results, so they were maintained for this experiment. The tuning that was done
involved finding the correct number of networks to use in the ensemble. Ensemble sizes of
2 through 9 were tested on the double pole balancing problem, resulting in the finding that
training time was reduced from 2 to 5 populations, but did not decrease significantly after
a plateau is reached at an ensemble size of 5.

For each experiment, a total of 30 runs were completed. Due to the heightened compu-
tational complexity of running an ensemble of NEAT networks, it was not possible to run
the experiments for a significantly larger number of times. Still, 30 runs were enough to
obtain a sufficiently robust picture of the models’ behaviors and performances, and enough
to perform statistical analysis.

5



Burchard

Figure 2: Double pole balancing problem

3.1 XOR

To begin with, the proposed method was tested on the basic XOR problem. In this problem,
there are two binary inputs, with a single binary output. The fitness of an individual is a
maximum of 4, which is achieved if the network successfully XORs all four inputs. Over the
30 runs, both methods correctly solved the XOR problem 100% of the time. As expected, the
single NEAT network evolved to XOR the inputs in an average of 35 generations (σ = 7.2),
which reflects the results found from the NEAT paper. Similarly, the proposed ensemble
was able to solve it, taking an average of 32 generations (σ = 5.5). Though these results are
not significantly different, and the XOR problem is not particularly useful for comparison,
the reduced standard deviation of the ensemble is an interesting result. This is the first
display of the usefulness of the ensemble, as it can more consistently produce a result, which
can be useful in certain applications.

3.2 Double Pole Balancing

The double pole balancing problem, as described in Figure 2, is a well-known benchmark in
the literature, and almost every technique has been applied to it. Two poles are connected
to a moving cart by a hinge, and the neural network must apply force Fc to the cart to keep
the poles balanced for as long as possible without going beyond the boundaries of the track.
The system state is defined by the cart position (x) and velocity (ẋ), the first pole’s position
(θ1) and angular velocity (θ̇1), and the second pole’s position (θ2) and angular velocity (θ̇2).
Control is possible because the poles have different lengths and therefore respond differently
to control inputs. By including the velocity as inputs to the neural network, the problem
becomes Markovian, and has been applied to many different standard systems.

NE has long been known to be an effective solution for pole balancing in comparison to
other techniques, displaying decreased training times and higher fitness than other common
reinforcement learning methods (Moriarty and R., 1997). These capabilities have been
thought to be effective due to NE’s ability to learn behaviors and patterns, generating
increasingly complex structures in the network as it learns. In the original NEAT paper,
various forms of the pole balancing problem were the primary focuses of displaying the

6



Gated NEAT Ensembles

Method Evaluations Generations No. Nets

EP 307,200 150 2048

EP Ensemble 279,500 150 2048

NEAT 3,600 24 150

NEAT Ensemble 3,420 23 150

Table 1: Double Pole Balancing Problem Results

technique’s capabilities. Their results found that NEAT performs 25 times faster than
Cellular Encoding and 5 times faster than ESP.

The double pole balancing problem was set up using the parameters described by Stanley
and Miikkulainen (2002), and implemented in the neat-python package. Fitness is not
determined by ability to solve the problem, as all four methods were able to maintain the
success criteria of keeping both poles balanced (between -36 and 36 degrees from vertical)
for 100,000 time steps. As displayed in Table 1, the inclusion of the ensemble method did
not significantly improve results. This result is likely because the ensemble method does not
create significantly improved ability to solve a problem quickly or efficiently, but is instead
useful in gaining performance. As the double pole balancing problem can be solved by even
a simple method, albeit slowly, the ensemble was not able to display its capabilities in this
problem.

3.3 Go

The final test for the proposed method was the game of Go, which is a board game that
originated in China and is played on a 19x19 board. The game has a large branching factor
and a high degree of complexity, making it challenging to solve using traditional search-
based methods. It is commonly studied in the literature, but even the most advanced
method with supercomputer capabilities struggle to consistently perform against human
players, despite its simplicity. There are two players, black and white, which alternate
turns placing stones on an empty intersection. Stones are not moved, but a group of stones
can be surrounded by the opposing player, “capturing” the stones and removing them from
the board. The winner is determined at the end of the game, when there are no legal moves
or both players have passed, by counting the total area controlled by each player.

Despite the basic rules, there are great complexities and theories surrounding the game,
especially as it has been played around the world for thousands of years, making it arguably
the oldest board game which is still commonly played. Go has long been recognized as a
challenging problem for artificial intelligence due to the vast number of possible moves and
board configurations, which exceeds the number of atoms in the universe. However, recent
advances in machine learning, such as deep neural networks and reinforcement learning,
have shown promising results in creating Go-playing algorithms that can compete with top
human players (Silver et al., 2016). These advances have not only led to improvements in
the performance of game-playing agents but also shed light on broader research questions in
the fields of decision making, planning, and cognitive psychology. As such, Go has become
an increasingly popular domain for testing and benchmarking machine learning algorithms,
and has led to important contributions to the field of AI.

7



Burchard

Figure 3: An example 7x7 board position generated by the model. In this position, white
is clearly winning, but the game has not finished.

To assess the model’s capabilities, the Gym API developed by OpenAI was employed..
In this, the game is represented by an object with a three-dimensional 3 × n × n array
representing the board. The three layers represent the black and white pieces respectively
and invalid moves for the next action (ko), with additional channels indicating whose turn
it is, whether the previous move was a pass, and whether the game is over. To ease the
computational complexity, the experiment used a board size of 7 × 7, which is a standard
variation of the game.

Each network is fed the two layers from the game representing the positions of black and
white pieces, with a similar output layer to decide where to place the stone. This results
in a total of 8 × 8 × 2 = 128 inputs, and 8 × 8 = 64 outputs (as the edges are played on,
not the spaces). The output layer consists of 64 scores ranging from 0 to 1 which represent
the model’s estimated quality of a play. To ensure no illegal moves are made, the outputs
of any illegal position (i.e. ko and positions which already contain a stone) are artificially
set to zero. To speed up training, the scores are then squared and normalized to one again.
Formally, let y be the output vector of the neural network with n nodes and y′ be the
altered vector:

y′ =
y2

n∑
i=1

y2
i

To train the populations, we used the board positions and moves from around 8,000
games, which were sourced from a variety of internet Go sources. Based on the sources and
characteristics of the data, we are confident that the data is all derived from games played
by humans, and many of them are from professional games. The 9x9 board format is not
very common at the professional level, so it was difficult to source more games than this, or
to get them all from a single source. However, we are confident that the data quality is high
enough for training, and that many games is plenty for training, as it totals to over 400,000

8



Gated NEAT Ensembles

Model Average Difference Standard Deviation

NEAT v. NEAT -0.2 14.2
Ensemble v. Ensemble 0.1 10.9
Ensemble v. NEAT 8.7 4.5

NEAT v. Beginner Bot 4.6 10.2
Ensemble v. Beginner Bot 11.1 9.9
NEAT v. Intermediate Bot -1.3 8.4

Ensemble v. Intermediate Bot 3.2 8.2

Table 2: Average territory differences and standard deviations after 30 trials of Go games.

board positions. We used the training methodology from Clark and Storkey (2015), with
8% of the games used for training, 4% for validation, and the remaining 88% for training.
The validation set was used to test parameters, and monitor the progress of training.

We were able to train the models on this dataset for a total of 50 epochs, which was
limited by time constraints. Due to the size of the dataset, though, we believe this was a
sufficient training time, and is more than some other similar experiments. To ensure that
the networks could play we, then trained the networks for an additional 50 epochs with a
form of competitive evolutions, by having the networks repeatedly play against each other.
In each training step, two networks are randomly chosen to play against each other (75
games per iteration with n = 150). Once the game concludes, the two players are assigned
a fitness equal to the difference between the two players’ territories, which typically ranges
from 0 points for a tied game to as much as 30.

The test set was then used to validate the performance of the models. We found the
NEAT networks maintained a performance of 33.7% accuracy on the testing sets, while the
ensembles were able to reach 38.2% accuracy. These scores do not appear very high, but
they are very competitive to other techniques with similar complexity. With the ensembles
achieving significantly higher performance than the single NEAT networks, these scores
confirm the ability of the NEAT ensemble in complex, difficult to predict environments.
As the dataset used had multiple sources, it is difficult to directly compare our technique
against other models, but the best performance yet achieved on a 19x19 board is 40-45%
(Clark and Storkey, 2015).

After training, several tests were performed. First, to compare the methods, the ensem-
bles were tested against the single NEAT networks to see if the ensemble is able to learn
to play Go with higher performance. The resulting scores after 30 games are displayed in
Table 2. As would be expected, the models playing against themselves generally came out
about even, with about half the games being won by each player. However, the result of the
ensembles versus NEATs confirms the ability for the ensembles to learn a complex game
such as Go. The ensemble models won around 97% of the games against the normal NEAT,
which is a clear demonstration of its abilities.

Additionally, the OpenAI Gym Go package comes with a prebuilt Go bot, which has
difficulty levels which roughly correspond to beginner, intermediate, and advanced players
(using the kyu and dan system). Both the single NEAT network and the ensemble were able
to generally beat the beginner player, and the ensemble did it with significantly more terri-
tory. Against the intermediate bot, scores were much closer to even, but the ensemble did

9



Burchard

manage to achieve a win rate over 50%. The Ensemble’s territory scores were significantly
better than NEAT against the intermediate bot, but only by a slim margin. Unfortunately,
against the advanced bot, neither model was ever able to win.

Though the model was able to learn to play the game with proficiency, it was not able
to discover and utilize common strategies used by human players. For example, the concept
of eyes is important in Go, which refers to the idea of creating empty spaces that are
surrounded by a player’s stones, and which cannot be captured by the opponent. However,
the model did not learn to recognize this concept, instead focusing on capturing as many
stones as possible, which can be seen in the inefficient position in Figure 3. One notable
aspect of this position is the presence of clear geometric structures, especially lines of stones,
which are not usually apparent in human-played games. Additionally, the model was not
able to display a capability to plan ahead and anticipate the consequences of its moves,
which is a crucial skill for successful Go players. This limitation is likely due to the fact
that the model was trained solely through self-play, without any guidance or feedback from
human players. While this approach has its benefits, such as the ability to generate novel
strategies and tactics, it also has limitations in terms of developing human-like playing
styles. Future research could explore hybrid approaches that combine self-play with human
feedback or imitation learning, in order to address some of these limitations and create
models that can play at a high level while also utilizing human-like strategies. Despite that,
it was able to consistently play at an intermediate level, with very little complexity and
training time in comparison to more robust methods.

4. Conclusions

Though a technique such as this could be useful in environments where performance matters
much more than computational complexity, the applications of such complicated ensemble
methods tend to be limited. This ensemble took more than 6 times as long to train as
a single NEAT population would, as a result of needing 5 populations for prediction and
another population for the gating network. One reason that ensembles may become more
useful in the near future, though, is the ease of using modern parallelization techniques
to improve performance. The Python package used in this experiment comes with the
ability to parallelize computation, which successfully improved the training times. Still,
there is an obvious gap between computational resources and the small gains found in
this experiment, with several hundred percent increases in computation versus single digit
percentage performance gains.

After training, however, this method is almost certainly better than a single NEAT
network. While the model may seem overly computationally complex, it is not problematic
because the feed forward step for each network only takes less than a second to complete.
This is because the number of neurons and connections in each network is not very large,
typically in the order of tens to hundreds, thanks to NEAT’s ability to form efficient,
small networks. Thus, the feed forward step is not prohibitively computationally intensive.
Moreover, after the NEAT ensemble is trained, the gating network can quickly select the
best network for a particular input, instead of evaluating the fitness of all networks in the
ensemble, which significantly reduces the computation time. Still, the training time remains
large, because in training every network in every ensemble needs to be evaluated, in order

10



Gated NEAT Ensembles

to get an accurate fitness for each gating network in the population. So, there are clear
applications for this technique in places where large resources can be committed to training
time, and fast, accurate predictions are needed in problems.

There is still a massive amount of research to be done in this topic. In future experiments,
further tuning of hyperparameters would be preferred. By doing detailed testing across
a wide variety of hyperparameters, much better and more conclusive analysis could be
performed. However, the inability to do this can also be considered a fair component of the
comparison. In most modern applications, users do not have the background knowledge nor
time to accurately choose hyperparameters. Considering this, it is unreasonable to assume
hyperparameters will be tuned in the real-world, which contributed to the decision to use
default values in this experiment. One of NEAT’s major downsides is its large range of
complex hyperparameters, most of which cannot be reasonably tuned for most use cases.
There is some work on automatically finding good values for hyperparameters in NEAT
Radaideh et al. (2021), the inclusion of which could drastically improve results.

Testing NEAT and ensembles on more complex problems would likely be the obvious
next step. In this experiment, the ensembles were not able to display their full capabilities,
because none of the problems fully took advantage of the ensemble’s capabilities. In an
environment where slight differences in performance matter greatly, such as safety-critical
environments, and performance is difficult to achieve, ensembles could be a more useful
option. Most of our researched problems rewarded fast training more than anything else,
which was improved by the ensembles, but it could still be better showcased. It would
further be a useful experiment to try this method on as many problems as possible, to see
what it is best suited for, rather than a few randomly chosen problems.

Ideally, the Go problem in particular would have better forms of training and testing.
However, this comprised the large majority of actual training and testing time, so it was
difficult to experiment with trying different possible implementations, though it would al-
most certainly have a large positive impact on performance. For instance, ensuring that
each NEAT network in the ensemble is able to specialize in a certain task, rather than
simply training them all on the same data. For instance, in the Go game, each network
could be trained on a different portion of the game, such as beginning, middle, and end.
Many previous works have attempted to do this, especially in data classification (Brown,
2004). Other methods of improvement could involve changing the fitness equations used
in this experiment, altering the training procedures, and increased optimization. It would
not be particularly difficult to incorporate the method of Monte Carlo Tree Search into our
model, which is currently considered the state-of-the-art for advanced Go bots, though it
would likely increase the computational complexity (Silver et al., 2016).

Despite the large amount of future work which could be done, this experiment did
successfully show that ensembles can be applied to NEAT using a gating network method.
In all the experiments done, the number of generations needed for training was able to
be reduced (albeit insignificantly), and performance generally increased. As many of these
techniques were somewhat crude and not using the most modern strategies, this is clearly
an area of artificial intelligence research with great future potential.

11



Burchard

References

L Breiman. Random forests. Machine Learning, 45:5–32, 2002.

Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.

Gavin Brown. Diversity in neural network ensembles. PhD thesis, Citeseer, 2004.

Christopher Clark and Amos Storkey. Training deep convolutional neural networks to play
go. In International conference on machine learning, pages 1766–1774. PMLR, 2015.

Reza Ebrahimpour, Seyed Ali Asghar Abbaszadeh Arani, and Saeed Masoudnia. Improv-
ing combination method of ncl experts using gating network. Neural Computing and
Applications, 22:95–101, 2013.

Kamil Faber, Marcin Pietron, and Dominik Zurek. Ensemble neuroevolution-based ap-
proach for multivariate time series anomaly detection. Entropy, 23(11), 2021.

Faustino J. Gomez and Risto Miikkulainen. Solving non-markovian control tasks with neu-
roevolution. Proceedings of the International Joint Conference on Artificial Intelligence,
pages 1356–1361, 1999.

Ammar Mohammed and Rania Kora. A comprehensive review on ensemble deep learn-
ing: Opportunities and challenges. Journal of King Saud University - Computer and
Information Sciences, 35(2):757–774, 2023.

D.E. Moriarty and Miikkulainen R. Forming neural networks through efficient and adaptive
coevolution. Evolutionary computation, 5(4):373–399, 1997.

Evgenia Papavasileiou, Jan Cornelis, and Bart Jansen. A systematic literature review of
the successors of “neuroevolution of augmenting topologies”. Evolutionary Computation,
29(1):1–73, 2021.

Majdi I Radaideh, Katelin Du, Paul Seurin, Devin Seyler, Xubo Gu, Haijia Wang, and
Koroush Shirvan. Neorl: Neuroevolution optimization with reinforcement learning. arXiv
preprint arXiv:2112.07057, 2021.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6):386–408, 1958.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2):99–127, 2002.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

12


	Introduction
	Background
	NEAT
	Ensemble Predictions

	Experimental Design and Results
	XOR
	Double Pole Balancing
	Go

	Conclusions

